Editorial on Wireless Power Transfer (WPT): Present Advancements Applications and Future Outlooks

The Evolution and Significance of Wireless Power Transfer (WPT): Wireless power transfer (WPT) technologies, which enable the transmission of electrical energy without the need for physical connectors, have emerged as a transformative solution in various industries … clear
You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.
Find support for a specific problem in the support section of our website.
Get Support Please let us know what you think of our products and services.
Give Feedback Visit our dedicated information section to learn more about MDPI.
Get Information clear by Eun S. LeeEun S. Lee SciProfiles Scilit Preprints.org Google Scholar
School of Electrical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea Appl. Sci.2024, 14(22), 10627; https://doi.org/10.3390/app142210627 Submission received: 20 September 2024 / Accepted: 12 November 2024 / Published: 18 November 2024 (This article belongs to the Special Issue Wireless Power Transfer Systems) Download keyboard_arrow_downDownload PDFDownload PDF with CoverDownload XMLDownload EpubVersions Notes
1. Introduction
The Evolution and Significance of Wireless Power Transfer (WPT): Wireless power transfer (WPT) technologies, which enable the transmission of electrical energy without the need for physical connectors, have emerged as a transformative solution in various industries. Initially conceptualized by Nikola Tesla in the early 20th century, WPT has evolved from a theoretical concept to practical technology employed in applications ranging from consumer electronics to industrial automation. As industries increasingly prioritize flexibility, reliability, and the seamless integration of devices, WPT is becoming indispensable.WPT’s Role in the Energy Ecosystem: As global energy consumption increases, driven by growing demands for mobile devices, electric vehicles (EVs), and industrial automation, WPT technology provides a pathway toward more sustainable energy utilization. This editorial delves into the recent developments in WPT, focusing on its applications in various sectors while addressing the technological challenges and future research directions that will shape its trajectory.
2. Development and Applications of WPT
Overview of WPT Technologies: WPT technologies are generally classified into near-field or far-field techniques. Near-field methods, such as inductive coupling and resonant inductive coupling, operate over shorter distances but offer higher efficiency. Inductive coupling is currently the most widely used method in consumer electronics, enabling devices like smartphones and wearables to charge wirelessly. Far-field methods, including microwave- and laser-based WPT, are designed to work over longer distances and currently suffer from lower efficiency due to the challenges associated with energy beam divergence and environmental interference. These technologies have gained significant attention in aerospace applications such as powering satellites or remote sensors.Resonant Inductive Coupling for Electric Vehicles: One of the most promising applications of WPT is in the automotive industry, and in electric vehicles (EVs) in particular 1,2,3. Charging infrastructure remains a key barrier to the widespread adoption of EVs, and WPT is seen as a viable solution for streamlining charging operations. Researchers are developing stationary and dynamic (in-motion) wireless charging systems, where EVs can recharge their batteries without being physically connected to a power source. Recent advances in resonant inductive coupling have improved the efficiency of wireless charging, reducing energy losses and making it possible for EVs to charge as they travel along specially equipped roads.Biomedical Applications of WPT: In the healthcare sector, WPT plays a critical role in the development of implantable medical devices 4,5. Pacemakers, cochlear implants, and other biomedical devices powered by WPT systems eliminate the need for regular battery replacement surgeries, enhancing patient comfort and safety. Advances in the efficiency of miniaturized WPT systems are driving the adoption of wireless charging in next-generation medical devices. Furthermore, WPT is being investigated for use in wearable health monitoring systems that provide continuous data on patients’ vital signs, enabling real-time diagnostics and telemedicine.WPT in the Internet of Things (IoT): With the rapid proliferation of the Internet of Things (IoT), which envisions a world where billions of devices are interconnected, WPT is emerging as a critical enabler of continuous power for sensors, actuators, and other low-power devices 6,7,8. WPT systems, particularly in smart cities and industrial automation, are expected to provide a solution to the limitations of battery-powered devices by enabling contactless and uninterrupted energy delivery. The integration of WPT into IoT technologies would enable the realization of “smart environments” where energy is wirelessly distributed to connected devices, creating more efficient and sustainable infrastructures.
3. Challenges in Wireless Power Transfer
Efficiency and Energy Loss: A major limitation of current WPT technologies is their efficiency, especially as the distance between the transmitter and receiver increases. While resonant inductive coupling achieves high efficiencies over short distances, far-field methods such as microwave- and laser-based WPT face significant losses due to scattering, absorption, and beam divergence. The efficiency of WPT systems is directly related to the alignment of their transmitter and receiver, and any misalignment results in significant energy losses. Researchers are currently focusing on developing adaptive systems that can dynamically adjust their transmission parameters to maximize efficiency under varying conditions.Electromagnetic Interference (EMI): Electromagnetic interference (EMI) is another critical challenge that affects the reliability and safety of WPT systems, particularly in environments with multiple electronic devices. High-power WPT systems can potentially interfere with sensitive electronic equipment, causing performance degradation or malfunction. This is especially important in healthcare settings where medical devices operate in close proximity to each other. To address this, researchers are investigating advanced shielding techniques and frequency management protocols that can minimize EMI and ensure the safe coexistence of WPT systems and other electronic devices.Regulatory and Standardization Issues: The adoption of WPT on a global scale is hindered by the lack of standardized protocols and regulatory frameworks governing the transmission of wireless power 9. Currently, different regions have varying regulations regarding the frequency bands and power levels that can be used for WPT systems. This lack of harmonization complicates the development of globally interoperable systems. Organizations such as the Wireless Power Consortium (WPC) are working towards the creation of international standards for WPT technologies, which would enable their seamless integration into different markets and industries.
4. Future Directions in WPT
Advancements in Materials and Circuit Design: The next wave of innovations in WPT is expected to come from advancements in materials science 10,11,12,13,14. Researchers are exploring the use of metamaterials—artificially engineered materials with properties not found in nature—that can focus and guide electromagnetic waves with higher precision. These materials have the potential to significantly improve the efficiency of WPT systems, particularly over longer distances. In parallel, breakthroughs in semiconductor technologies are expected to lead to more efficient power management circuits that minimize energy loss and maximize power transfer efficiency.WPT for Renewable Energy Systems: Integrating WPT with renewable energy systems such as solar and wind power offers exciting possibilities for off-grid power generation. For instance, solar-powered drones equipped with WPT systems could be used to transmit power to remote locations where traditional power infrastructures are lacking. Similarly, WPT could be used in conjunction with floating solar farms to wirelessly deliver power to nearby shore facilities. As renewable energy technologies continue to evolve, WPT may become a key component in creating decentralized, sustainable energy networks.Artificial Intelligence and WPT Systems: Artificial intelligence (AI) is poised to play a transformative role in optimizing WPT systems 1,2,3. AI algorithms can be used to dynamically adjust the transmission parameters of WPT systems in real time, ensuring that power is delivered efficiently even in changing environments. For example, AI-driven WPT systems in smart homes could automatically adjust power delivery based on the presence of devices and their energy requirements, thereby reducing waste and enhancing energy efficiency.
5. Conclusions
Wireless power transfer technology has come a long way from its theoretical foundations and is now at the cusp of widespread adoption. However, there are still significant challenges to overcome, particularly in improving its efficiency, reducing interference, and establishing global standards. As WPT technologies continue to evolve, they are expected to play a key role in driving innovation across industries, from electric vehicles to healthcare and beyond. With ongoing research and development, the future of WPT has immense potential to create a more connected, sustainable, and energy-efficient world.
Acknowledgments
The authors would like to acknowledge the use of ChatGPT to correct the grammar and vocabulary used throughout this article.
Conflicts of Interest
The author declares no conflicts of interest.
References
- Choi, B.-G.; Kim, Y.-S. New structure design of ferrite cores for wireless electric vehicle charging by machine learning. IEEE Trans. Ind. Electron.2021, 68, 12162–12172. Google Scholar CrossRef
- Choi, B.-G.; Lee, E.S.; Kim, Y.-S. Optimal structure design of ferromagnetic cores in wireless power transfer by reinforcement learning. IEEE Access2020, 8, 179295–179306. Google Scholar CrossRef
- Jeong, M.S.; Jang, J.H.; Lee, E.S. Optimal IPT Core Design for Wireless Electric Vehicles by Reinforcement Learning. IEEE Trans. Power Electron.2023, 38, 13262–13272. Google Scholar CrossRef
- Lee, J.; Bae, B.; Kim, B.; Lee, B. Full-Duplex Enabled Wireless Power Transfer System via Textile for Miniaturized IMD. Biomed. Eng. Lett.2022, 12, 295–302. Google Scholar CrossRef PubMed
- Hassan, N.; Hong, S.W.; Lee, B. A Robust Multi-Output Self-Regulated Rectifier for Wirelessly-Powered Biomedical Applications. IEEE Trans. Ind. Electron.2021, 68, 5466–5472. Google Scholar CrossRef
- An, H.; Yuan, J.; Li, J.; Cao, L. Design and Analysis of Omnidirectional Receiver with Multi-Coil for Wireless Power Transmission. Electronics2022, 11, 3103. Google Scholar CrossRef
- Allama, O.; Habaebi, M.H.; Khan, S.; Elsheikh, E.A.A.; Suliman, F.E.M. 2D Omni-Directional Wireless Power Transfer Modeling for Unmanned Aerial Vehicles with Noncollaborative Charging System Control. Electronics2021, 10, 2858. Google Scholar CrossRef
- Colmiais, I.; Dinis, H.; Mendes, P.M. Long-Range Wireless Power Transfer for Moving Wireless IoT Devices. Electronics2024, 13, 2550. Google Scholar CrossRef
- Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology, International Standard SAE J2954. 2024. Available online: https://www.sae.org/standards/content/j2954_201904/ (accessed on 10 November 2024).
- Rhee, J.; Woo, S.; Lee, C.; Ahn, S. Selection of Ferrite Depending on Permeability and Weight to Enhance Power Transfer Efficiency in Low-Power Wireless Power Transfer Systems. Energies2024, 17, 3816. Google Scholar CrossRef
- Radha, S.M.; Choi, S.H.; Lee, J.H.; Oh, J.H.; Cho, I.-K.; Yoon, I.-J. Ferrite-Loaded Inverted Microstrip Line-Based Artificial Magnetic Conductor for the Magnetic Shielding Applications of a Wireless Power Transfer System. Appl. Sci.2023, 13, 10523. Google Scholar CrossRef
- Rong, C.; Yan, L.; Li, L.; Li, Y.; Liu, M. A Review of Metamaterials in Wireless Power Transfer. Materials2023, 16, 6008. Google Scholar CrossRef PubMed
- Lee, W.; Yoon, Y.-K. High-Efficiency Wireless-Power-Transfer System Using Fully Rollable Tx/Rx Coils and Metasurface Screen. Sensors2023, 23, 1972. Google Scholar CrossRef PubMed
- Shan, D.; Wang, H.; Cao, K.; Zhang, J. Wireless Power Transfer System with Enhanced Efficiency by Using Frequency Reconfigurable Metamaterial. Sci. Rep.2022, 12, 331. Google Scholar CrossRef PubMed
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). The Evolution and Significance of Wireless Power Transfer (WPT): Wireless power transfer (WPT) technologies, which enable the transmission of electrical energy without the need for physical connectors, have emerged as a transformative solution in various industries. Initially conceptualized by Nikola Tesla in the early 20th century, WPT has evolved from a theoretical concept to practical technology employed in applications ranging from consumer electronics to industrial automation. As industries increasingly prioritize flexibility, reliability, and the seamless integration of devices, WPT is becoming indispensable. WPT’s Role in the Energy Ecosystem: As global energy consumption increases, driven by growing demands for mobile devices, electric vehicles (EVs), and industrial automation, WPT technology provides a pathway toward more sustainable energy utilization. This editorial delves into the recent developments in WPT, focusing on its applications in various sectors while addressing the technological challenges and future research directions that will shape its trajectory. Overview of WPT Technologies: WPT technologies are generally classified into near-field or far-field techniques. Near-field methods, such as inductive coupling and resonant inductive coupling, operate over shorter distances but offer higher efficiency. Inductive coupling is currently the most widely used method in consumer electronics, enabling devices like smartphones and wearables to charge wirelessly. Far-field methods, including microwave- and laser-based WPT, are designed to work over longer distances and currently suffer from lower efficiency due to the challenges associated with energy beam divergence and environmental interference. These technologies have gained significant attention in aerospace applications such as powering satellites or remote sensors. Resonant Inductive Coupling for Electric Vehicles: One of the most promising applications of WPT is in the automotive industry, and in electric vehicles (EVs) in particular 1,2,3. Charging infrastructure remains a key barrier to the widespread adoption of EVs, and WPT is seen as a viable solution for streamlining charging operations. Researchers are developing stationary and dynamic (in-motion) wireless charging systems, where EVs can recharge their batteries without being physically connected to a power source. Recent advances in resonant inductive coupling have improved the efficiency of wireless charging, reducing energy losses and making it possible for EVs to charge as they travel along specially equipped roads. Biomedical Applications of WPT: In the healthcare sector, WPT plays a critical role in the development of implantable medical devices 4,5. Pacemakers, cochlear implants, and other biomedical devices powered by WPT systems eliminate the need for regular battery replacement surgeries, enhancing patient comfort and safety. Advances in the efficiency of miniaturized WPT systems are driving the adoption of wireless charging in next-generation medical devices. Furthermore, WPT is being investigated for use in wearable health monitoring systems that provide continuous data on patients’ vital signs, enabling real-time diagnostics and telemedicine. WPT in the Internet of Things (IoT): With the rapid proliferation of the Internet of Things (IoT), which envisions a world where billions of devices are interconnected, WPT is emerging as a critical enabler of continuous power for sensors, actuators, and other low-power devices 6,7,8. WPT systems, particularly in smart cities and industrial automation, are expected to provide a solution to the limitations of battery-powered devices by enabling contactless and uninterrupted energy delivery. The integration of WPT into IoT technologies would enable the realization of “smart environments” where energy is wirelessly distributed to connected devices, creating more efficient and sustainable infrastructures. Efficiency and Energy Loss: A major limitation of current WPT technologies is their efficiency, especially as the distance between the transmitter and receiver increases. While resonant inductive coupling achieves high efficiencies over short distances, far-field methods such as microwave- and laser-based WPT face significant losses due to scattering, absorption, and beam divergence. The efficiency of WPT systems is directly related to the alignment of their transmitter and receiver, and any misalignment results in significant energy losses. Researchers are currently focusing on developing adaptive systems that can dynamically adjust their transmission parameters to maximize efficiency under varying conditions. Electromagnetic Interference (EMI): Electromagnetic interference (EMI) is another critical challenge that affects the reliability and safety of WPT systems, particularly in environments with multiple electronic devices. High-power WPT systems can potentially interfere with sensitive electronic equipment, causing performance degradation or malfunction. This is especially important in healthcare settings where medical devices operate in close proximity to each other. To address this, researchers are investigating advanced shielding techniques and frequency management protocols that can minimize EMI and ensure the safe coexistence of WPT systems and other electronic devices. Regulatory and Standardization Issues: The adoption of WPT on a global scale is hindered by the lack of standardized protocols and regulatory frameworks governing the transmission of wireless power 9. Currently, different regions have varying regulations regarding the frequency bands and power levels that can be used for WPT systems. This lack of harmonization complicates the development of globally interoperable systems. Organizations such as the Wireless Power Consortium (WPC) are working towards the creation of international standards for WPT technologies, which would enable their seamless integration into different markets and industries. Advancements in Materials and Circuit Design: The next wave of innovations in WPT is expected to come from advancements in materials science 10,11,12,13,14. Researchers are exploring the use of metamaterials—artificially engineered materials with properties not found in nature—that can focus and guide electromagnetic waves with higher precision. These materials have the potential to significantly improve the efficiency of WPT systems, particularly over longer distances. In parallel, breakthroughs in semiconductor technologies are expected to lead to more efficient power management circuits that minimize energy loss and maximize power transfer efficiency. WPT for Renewable Energy Systems: Integrating WPT with renewable energy systems such as solar and wind power offers exciting possibilities for off-grid power generation. For instance, solar-powered drones equipped with WPT systems could be used to transmit power to remote locations where traditional power infrastructures are lacking. Similarly, WPT could be used in conjunction with floating solar farms to wirelessly deliver power to nearby shore facilities. As renewable energy technologies continue to evolve, WPT may become a key component in creating decentralized, sustainable energy networks. Artificial Intelligence and WPT Systems: Artificial intelligence (AI) is poised to play a transformative role in optimizing WPT systems 1,2,3. AI algorithms can be used to dynamically adjust the transmission parameters of WPT systems in real time, ensuring that power is delivered efficiently even in changing environments. For example, AI-driven WPT systems in smart homes could automatically adjust power delivery based on the presence of devices and their energy requirements, thereby reducing waste and enhancing energy efficiency. Wireless power transfer technology has come a long way from its theoretical foundations and is now at the cusp of widespread adoption. However, there are still significant challenges to overcome, particularly in improving its efficiency, reducing interference, and establishing global standards. As WPT technologies continue to evolve, they are expected to play a key role in driving innovation across industries, from electric vehicles to healthcare and beyond. With ongoing research and development, the future of WPT has immense potential to create a more connected, sustainable, and energy-efficient world. The authors would like to acknowledge the use of ChatGPT to correct the grammar and vocabulary used throughout this article. The author declares no conflicts of interest. 52. Choi, B.-G.; Kim, Y.-S. New structure design of ferrite cores for wireless electric vehicle charging by machine learning. IEEE Trans. Ind. Electron.2021, 68, 12162–12172. Google Scholar CrossRef 53. Choi, B.-G.; Lee, E.S.; Kim, Y.-S. Optimal structure design of ferromagnetic cores in wireless power transfer by reinforcement learning. IEEE Access2020, 8, 179295–179306. Google Scholar CrossRef 54. Jeong, M.S.; Jang, J.H.; Lee, E.S. Optimal IPT Core Design for Wireless Electric Vehicles by Reinforcement Learning. IEEE Trans. Power Electron.2023, 38, 13262–13272. Google Scholar CrossRef 55. Lee, J.; Bae, B.; Kim, B.; Lee, B. Full-Duplex Enabled Wireless Power Transfer System via Textile for Miniaturized IMD. Biomed. Eng. Lett.2022, 12, 295–302. Google Scholar CrossRef PubMed 56. Hassan, N.; Hong, S.W.; Lee, B. A Robust Multi-Output Self-Regulated Rectifier for Wirelessly-Powered Biomedical Applications. IEEE Trans. Ind. Electron.2021, 68, 5466–5472. Google Scholar CrossRef 57. An, H.; Yuan, J.; Li, J.; Cao, L. Design and Analysis of Omnidirectional Receiver with Multi-Coil for Wireless Power Transmission. Electronics2022, 11, 3103. Google Scholar CrossRef 58. Allama, O.; Habaebi, M.H.; Khan, S.; Elsheikh, E.A.A.; Suliman, F.E.M. 2D Omni-Directional Wireless Power Transfer Modeling for Unmanned Aerial Vehicles with Noncollaborative Charging System Control. Electronics2021, 10, 2858. Google Scholar CrossRef 59. Colmiais, I.; Dinis, H.; Mendes, P.M. Long-Range Wireless Power Transfer for Moving Wireless IoT Devices. Electronics2024, 13, 2550. Google Scholar CrossRef 60. Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology, International Standard SAE J2954. 2024. Available online: https://www.sae.org/standards/content/j2954_201904/ (accessed on 10 November 2024). 61. Rhee, J.; Woo, S.; Lee, C.; Ahn, S. Selection of Ferrite Depending on Permeability and Weight to Enhance Power Transfer Efficiency in Low-Power Wireless Power Transfer Systems. Energies2024, 17, 3816. Google Scholar CrossRef 62. Radha, S.M.; Choi, S.H.; Lee, J.H.; Oh, J.H.; Cho, I.-K.; Yoon, I.-J. Ferrite-Loaded Inverted Microstrip Line-Based Artificial Magnetic Conductor for the Magnetic Shielding Applications of a Wireless Power Transfer System. Appl. Sci.2023, 13, 10523. Google Scholar CrossRef 63. Rong, C.; Yan, L.; Li, L.; Li, Y.; Liu, M. A Review of Metamaterials in Wireless Power Transfer. Materials2023, 16, 6008. Google Scholar CrossRef PubMed 64. Lee, W.; Yoon, Y.-K. High-Efficiency Wireless-Power-Transfer System Using Fully Rollable Tx/Rx Coils and Metasurface Screen. Sensors2023, 23, 1972. Google Scholar CrossRef PubMed 65. Shan, D.; Wang, H.; Cao, K.; Zhang, J. Wireless Power Transfer System with Enhanced Efficiency by Using Frequency Reconfigurable Metamaterial. Sci. Rep.2022, 12, 331. Google Scholar CrossRef PubMed
Share and Cite
MDPI and ACS Style Lee, E.S. Editorial on Wireless Power Transfer (WPT): Present Advancements, Applications, and Future Outlooks. Appl. Sci.2024, 14, 10627. https://doi.org/10.3390/app142210627
AMA Style Lee ES. Editorial on Wireless Power Transfer (WPT): Present Advancements, Applications, and Future Outlooks. Applied Sciences. 2024; 14(22):10627. https://doi.org/10.3390/app142210627
Chicago/Turabian Style Lee, Eun S. 2024. “Editorial on Wireless Power Transfer (WPT): Present Advancements, Applications, and Future Outlooks” Applied Sciences 14, no. 22: 10627. https://doi.org/10.3390/app142210627
APA Style Lee, E. S. (2024). Editorial on Wireless Power Transfer (WPT): Present Advancements, Applications, and Future Outlooks. Applied Sciences, 14(22), 10627. https://doi.org/10.3390/app142210627
Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.
Article Metrics
NoNo
Article Access Statistics
For more information on the journal statistics, click here. Multiple requests from the same IP address are counted as one view. MDPI and ACS Style Lee, E.S. Editorial on Wireless Power Transfer (WPT): Present Advancements, Applications, and Future Outlooks. Appl. Sci.2024, 14, 10627. https://doi.org/10.3390/app142210627
AMA Style Lee ES. Editorial on Wireless Power Transfer (WPT): Present Advancements, Applications, and Future Outlooks. Applied Sciences. 2024; 14(22):10627. https://doi.org/10.3390/app142210627
Chicago/Turabian Style Lee, Eun S. 2024. “Editorial on Wireless Power Transfer (WPT): Present Advancements, Applications, and Future Outlooks” Applied Sciences 14, no. 22: 10627. https://doi.org/10.3390/app142210627
APA Style Lee, E. S. (2024). Editorial on Wireless Power Transfer (WPT): Present Advancements, Applications, and Future Outlooks. Applied Sciences, 14(22), 10627. https://doi.org/10.3390/app142210627
Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.
Article Metrics
NoNo
Article Access Statistics
For more information on the journal statistics, click here. Multiple requests from the same IP address are counted as one view. here Multiple requests from the same IP address are counted as one view. Article Processing Charges Pay an Invoice Open Access Policy Contact MDPI Jobs at MDPI For Authors For Reviewers For Editors For Librarians For Publishers For Societies For Conference Organizers Sciforum MDPI Books Preprints.org Scilit SciProfiles Encyclopedia JAMS Proceedings Series LinkedIn Facebook Twitter
FAQ
การเปิดตัวคาสิโนออนไลน์ส่งผลต่อเกมรูเล็ตอย่างไร?
การเปิดตัวคาสิโนออนไลน์ส่งผลต่อเกมรูเล็ตอย่างไร? การเปิดตัวคาสิโนออนไลน์มีผลกระทบอย่างมากต่อเกมรูเล็ต คาสิโนออนไลน์ทำให้รูเล็ตและเกมคาสิโนอื่นๆ เข้าถึงได้ง่ายสำหรับทุกคนที่มีการเชื่อมต่ออินเทอร์เน็ต ขณะนี้ผู้เล่นสามารถเพลิดเพลินกับเกมคาสิโนที่พวกเขาชื่นชอบได้อย่างสะดวกสบายจากบ้านของตนเอง โดยไม่ต้องเดินทางไปที่คาสิโนบนบก คาสิโนออนไลน์ยังแนะนำรูเล็ตรูปแบบใหม่ เช่น รูเล็ตหลายล้อและมินิรูเล็ต ซึ่งโดยทั่วไปจะไม่พบในคาสิโนแบบดั้งเดิม นอกจากนี้ คาสิโนออนไลน์หลายแห่งยังมีรูเล็ตเจ้ามือสด ซึ่งจำลองประสบการณ์การเล่นในคาสิโนที่มีหน้าร้านจริง
อนาคตของเกมรูเล็ตจะเป็นอย่างไร?
อนาคตของเกมรูเล็ตจะเป็นอย่างไร? อนาคตที่เป็นไปได้ประการหนึ่งสำหรับรูเล็ตคือการบูรณาการเทคโนโลยีเสมือนจริงและความเป็นจริงเสริม สิ่งนี้จะช่วยให้ผู้เล่นได้ดื่มด่ำในสภาพแวดล้อมของคาสิโนเสมือนจริงและเพลิดเพลินไปกับประสบการณ์การเล่นเกมที่สมจริงและน่าดึงดูดยิ่งขึ้น อนาคตที่เป็นไปได้อีกประการหนึ่งสำหรับรูเล็ตคือการเติบโตอย่างต่อเนื่องของเกมออนไลน์ เมื่อผู้คนหันมาใช้อินเทอร์เน็ตเพื่อเล่นเกมมากขึ้นเรื่อยๆ คาสิโนออนไลน์ก็มีแนวโน้มที่จะได้รับความนิยมมากขึ้นเรื่อยๆ สิ่งนี้อาจนำไปสู่การพัฒนาเกมรูเล็ตประเภทใหม่และนวัตกรรมที่ออกแบบมาเพื่อการเล่นออนไลน์โดยเฉพาะ ในที่สุด การขยายตัวอย่างต่อเนื่องของเทคโนโลยีสกุลเงินดิจิทัลและบล็อกเชนอาจส่งผลกระทบอย่างมีนัยสำคัญต่ออนาคตของรูเล็ต เนื่องจากผู้เล่นมองหาวิธีในการทำธุรกรรมที่ปลอดภัยและไม่เปิดเผยตัวตนมากขึ้น จึงเป็นไปได้ที่เราจะเห็นคาสิโนออนไลน์ที่ยอมรับสกุลเงินดิจิทัล เช่น Bitcoin เป็นรูปแบบการชำระเงินมากขึ้น
WPT Global มีแอพมือถือหรือไม่?
WPT Global Mobile App: คุณสมบัติ ความพร้อมใช้งาน และวิธีการดาวน์โหลด WPT Global หนึ่งในแพลตฟอร์มโป๊กเกอร์ออนไลน์ที่เติบโตเร็วที่สุด นำเสนอแอปมือถือที่สะดวกและใช้งานง่ายสำหรับทั้งอุปกรณ์ iOS และ Android บทความนี้จะแนะนำคุณเกี่ยวกับฟีเจอร์ ความพร้อมใช้งาน และกระบวนการดาวน์โหลดของแอป ความพร้อมใช้งานและความเข้ากันได้ แอปมือถือ WPT Global มีให้บริการสำหรับ: 1. อุปกรณ์ iOS (iPhone และ iPad) ที่ใช้ iOS 13.0 ขึ้นไป 2. อุปกรณ์ Android คุณสมบัติหลัก แอปมือถือ WPT Global นำเสนอคุณสมบัติเด่นหลายประการ: 1. เข้าถึงเกมเงินสด การแข่งขัน และรูปแบบโป๊กเกอร์อื่นๆ 2. โหมดมืดเพื่อประสบการณ์การรับชมที่ดียิ่งขึ้น 3. ล็อบบี้ที่จัดกลุ่มเพื่อการเข้าถึงเกมที่รวดเร็วยิ่งขึ้น 4. ฟังก์ชั่นหลายตาราง 5. อวตาร NFT 6. ส่วนต่อประสานที่ใช้งานง่ายพร้อมการนำทางที่ราบรื่น 7. การตั้งค่าที่ปรับแต่งได้ (พื้นหลังของโต๊ะ สำรับ ฯลฯ) 8. ตัวเลือกการเติมเงินอัตโนมัติและขนาดเดิมพันแบบกำหนดเอง วิธีดาวน์โหลดแอป WPT Global Mobile สำหรับผู้ใช้ iOS: 1. เปิด Apple App Store บนอุปกรณ์ของคุณ
ชื่อรูเล็ตมีที่มาอย่างไร?
ชื่อรูเล็ตมีที่มาอย่างไร? ที่มาของชื่อ ârouletteâ เป็นภาษาฝรั่งเศส และแปลว่า âlittle wheelâ ชื่อนี้ได้มาจากข้อเท็จจริงที่ว่าเกมนี้เล่นบนวงล้อเล็กๆ ที่หมุนไปรอบๆ โดยผู้เล่นเดิมพันว่าลูกบอลจะตกลงไปที่ใด คำว่า ârouletteâ ถูกใช้ครั้งแรกในบริบทปัจจุบันในศตวรรษที่ 18 แม้ว่าตัวเกมจะมีมาก่อนหน้านี้มากก็ตาม นักประวัติศาสตร์บางคนเชื่อว่าเกมนี้อาจได้รับอิทธิพลจากเกมโบราณหลายประเภท รวมถึงเกม Baige Piao ของจีน ซึ่งใช้วงล้อหมุนเพื่อกำหนดผลลัพธ์ อีกทฤษฎีหนึ่งคือเกมนี้ได้รับแรงบันดาลใจจากเกม Biribi ของอิตาลี ซึ่งเล่นโดยใช้วงล้อและเกี่ยวข้องกับการเดิมพันตัวเลข เกมรูเล็ตได้กลายเป็นหนึ่งในเกมคาสิโนที่ได้รับความนิยมมากที่สุดในโลกโดยไม่คำนึงถึงต้นกำเนิดที่แน่นอน และชื่อของมันก็มีความหมายเหมือนกันกับการพนันและโอกาส
เรื่องอื้อฉาวและการโต้เถียงเกี่ยวกับรูเล็ตที่มีชื่อเสียงตลอดประวัติศาสตร์มีอะไรบ้าง?
เรื่องอื้อฉาวและการโต้เถียงเกี่ยวกับรูเล็ตที่มีชื่อเสียงตลอดประวัติศาสตร์มีอะไรบ้าง? 1. Eudaemons ในปี 1970 กลุ่มนักศึกษาฟิสิกส์ที่มหาวิทยาลัยแคลิฟอร์เนีย ซานตาครูซ ใช้คอมพิวเตอร์เพื่อทำนายผลลัพธ์ของเกมรูเล็ตในคาสิโนเนวาดา พวกเขาเรียกตัวเองว่า “พวก Eudaemons” และทำกำไรได้มากมายก่อนที่การดำเนินงานจะปิดตัวลง 2. The Ritz-Carlton Scandal – ในปี 2004 ทีมนักพนันชาวยุโรปตะวันออกใช้เครื่องสแกนเลเซอร์และคอมพิวเตอร์เพื่อคาดเดาว่าลูกบอลจะตกลงไปบนวงล้อรูเล็ตที่คาสิโน Ritz-Carlton ในลอนดอนที่ใด พวกเขาทำเงินได้ 1.3 ล้านปอนด์ก่อนที่จะถูกจับได้ 3. เรื่องราวของกอนซาโล การ์เซีย-เปลาโย – นักพนันชาวสเปน กอนซาโล การ์เซีย-เปลาโย ใช้คอมพิวเตอร์เพื่อวิเคราะห์การหมุนรูเล็ตหลายพันรอบที่คาสิโน Gran Madrid ในกรุงมาดริดในช่วงทศวรรษ 1990 เขาค้นพบว่าตัวเลขบางตัวบนวงล้อมีแนวโน้มที่จะถูกตีมากกว่าตัวเลขอื่นๆ และได้รับรางวัลหลายล้านดอลลาร์ก่อนที่จะถูกแบนจากคาสิโน 4. เรื่องอื้อฉาวเกี่ยวกับวงล้ออคติ ในยุค 1870 วิศวกรชาวอังกฤษ โจเซฟ แจ็กเกอร์ ค้นพบว่าหนึ่งในวงล้อรูเล็ตที่คาสิโน Beaux-Arts ในมอนติคาร์โล มีอคติและมีแนวโน้มที่จะได้ตัวเลขที่แน่นอนบ่อยกว่า เขาได้รับโชคลาภก่อนที่คาสิโนจะติดและเปลี่ยนวงล้อ 5. เรื่องอื้อฉาวของ Monique Laurent ในปี 1970 Monique Laurent เจ้ามือการพนันชาวฝรั่งเศสทำงานที่ Casino Deauville ใน Normandy และควบคุมวงล้อรูเล็ตตามความต้องการของเธอ เธอและน้องชายหาเงินได้มากกว่าหนึ่งล้านฟรังก์ก่อนจะถูกจับกุมและถูกตัดสินจำคุก
WPT Global - แพลตฟอร์มโป๊กเกอร์ออนไลน์ที่มีชื่อเสียงที่สุดในโลก! ที่นี่คือสวรรค์ของผู้ที่ชื่นชอบโป๊กเกอร์ คลิกที่นี่เพื่อเรียนรู้วิธีดาวน์โหลด WPT Global
เว็บไซต์นี้เพียงรวบรวมบทความที่เกี่ยวข้อง หากต้องการดูต้นฉบับ กรุณาคัดลอกและเปิดลิงก์ด้านล่าง:Editorial on Wireless Power Transfer (WPT): Present Advancements Applications and Future Outlooks